Total Pageviews

Friday, October 13, 2017

Carbon dating and the Math

One would have to be a hermit not to have heard about carbon dating.  This is the dating, for instance, of a piece of wood in an old building or a piece of charcoal in an archaeological dig.

At a first approximation, the physics is pretty straight forward.  An atom consists of a nucleus with electrons whizzing around the nucleus.  Which element the atom is depends on the number of electrons and the number of electrons, in turn, depends on the number of protons in the nucleus.  In a normal, unionized atom, the number of electrons and protons are equal and the atom is neutrally charged.

The glue that holds these positively charged protons together in the nucleus (remember like charges repel each other) are the neutrons.  Don't ask me how they do this.  The explanation is way above my pay grade.  Very roughly speaking, there are the same number of neutrons as protons but this can vary.  Carbon, for instance, can exist in a state with 6protons and 6 neutrons for an atomic mass number of 12. It can also exist in a form with 6 protons and 8 neutrons for a mass number of 14.

These two types are called isotopes of Carbon.  There is a third one but it is not needed for this explanation.

Some isotopes are stable, some are not (why is also above my pay grade).  In the case of Carbon, 12 is stable, 14 is not. 

Carbon 14 disintegrates into Nitrogen 14 with the ejection of an electron from one of it's neutrons.  The neutron becomes a proton so the atom is now a new element with 7 protons and 7 neutrons, hence 14N.

No one knows when any individual Carbon 14 atom is going to disintegrate.  There is a very small probability at any one moment but when you have a lot of 14C, you can predict how many atoms will change to 14N in any given time period.  This results in something interesting which has been observed experimentally.  If you know how much of the radioactive element you have, you will observe that half of it will break down in a given time, referred to as it's half life.  The half life of various radioactive isotopes varies from tiny fractions of a second to many millions of years.

In the case of 14C, it's half life is 5730 years give or take 40 years.

In 5730 years you will have half left, in another 5730 years, a quarter of the original amount, in one more half life, one eighth of the original amount and so forth.

So now we need the math for this.  We will work out what I call the straight forward formula and then we can change it around (solve for other parts) so that each component of the formula becomes the subject.

First a note on mathematical notation.

What is meant when you see a symbol.

xA means multiply the A by x.  If A is 2 and x is 3 then xA is 6

Ax means multiply A by itself x times.  If A is 2 and x is 3 then Ax is 8.  In words, A is raised to the xth power.

However, in the symbols Ax,  x is not an operator.  ie, it doesn't say to do anything.  It is a label.  It means the xth A.  For instance you could have A1, A2, A3 etc.  This is the first, second and third A.  Or Ao and At which for our purposes will mean A at time zero and A at a specified future time.

There is a special one in Chemistry.  I'll use Carbon since this is what we are talking about.  For instance 14C.  This means the carbon atom with 14 nucleotides.   ie, The sum of neutrons and protons adds up to `14.  There also exist 12C and 13C.  Of course both have 6 protons or it wouldn't be Carbon.  The number of neutrons varies.

And one more in Math.  If the subscript is after the word log such as log5 then it means log to the base 5.  If only log is used, it is understood it is to the base 10.   That is to say, log = log10 and if ln is used it is to the base 'e'.  Don't worry about it, we don't need 'e'.  I only mention it because it is on your little hand held computer and you might wonder.

Lets go back to the basics.  Every half life period, (h) the amount is halved. In the case of Carbon, the half life is 5730 years but half lives for other isotopes varies hugely.   Lets call the amount we start with as Ao (A at time zero) and the amount we are left with as At (A at some time t in the future).  The amount we will have left after one half life is:

1.   A1 = Ao(1/2)1

After two half lives
2.    A2 = Ao(1/2)2

After three half lives
3.    A3 = Ao(1/2)3
Remember 1/2 times 1/2 is 1/4.   Multiply once more by 1/2 and you have 1/8.  When you see a times sign between fractions, replace it in your mind with "of".  then 1/2 x 1/2 becomes one half of one half.

The 1,2 and 3 are the number of half lives that have gone by.

4.  So An - Ao(1/2)n  or in words, to find the amount of a substance after n half lives have gone by, multiply Ao, the initial amount, times 1/2 raised to the nth power.

Note that in the notation Ax,  x means the amount at time x expressed in half lives.

Also note that even if the n is not a whole number and therefore would take a wee bit of higher math (knowing logarithms), to solve, your computer does this with no problem.  Your high school computer can solve, for instance, 63.22 without raising a sweat.

Suppose we start with one gram of a radioactive substance and one half life has gone by.  We simply multiply 1gram times 1/2

Suppose 4 half lives have gone back.  We multiply the one gram times (1/2)4.  that is to say by 1/2 times 1/2 times 1/2 times 1/2 which equals 1/16th times the original amount.

Now suppose we know what the half life (h) of a particular isotope is.  Say it is 10 years, for simplicity.  Say 30 years have gone by.  Obviously 3 half lives have past.  In other words n, the number of half lives equals the time elapsed (t) divided by the Half life (h).  In this case n = 30/10 = 3.

5.   n=t/h.

And, as I said, it doesn't have to be a whole number.  If the half life is 10 years and 75 years have gone by then n = 75/10 = 7.5.  With simple math we would have a problem raising a number to a fractional exponent but your computer has no such problem so don't sweat it.

You can see where this is leading.  Since n=t/h, we can substitute t/h into the formula where we see n.

The radioactive decay formula then becomes

6.  At = Ao(1/2)t/h
or in words, to find the amount of radioactive material remaining after time t, multiply Ao, the initial amount, times one half raised to the power of t/h.

Good heavens!  I forgot to tell you where the radioactive Carbon comes from.  If it's half life is only 5730 years, in about 50,000 years there will be so little of it that carbon dating is out of the question and the world has been here for over 4b years.  Clearly, 14C must be being created somewhere.  the 'Where',, is in the upper atmosphere.  As cosmic rays hit the upper atmosphere, they are so energetic that they cause some nuclear reactions and one of these is to change 14N into 14C.  It is a very small amount but enough to be detected in living material with modern methods so we have a clock we can use.  When an organism dies it stops taking up carbon and the clock starts to tick.  If we  analyze it sometime in the future, we can know when it died (up to about 50,000 years).

Now we can do what a mathematician calls solving for Ao or for t or for h.  In other words we re-arrange the formula so that each of these terms in turn become the subject of the formula (ie. is by itself on the left and everything else is  on the right). I'll tell you what each variation of the formula is good for as we rearrange them.

The basic principle of solving for a factor (one of the letters) in a formula is that we can do anything we want to one side as long as we do the same to the other side.  After all if I have a formula that 7 = 3+4, if I multiply both sides by, say, 5, the formula is still correct.  Of course we don't just do random things to both sides of the formula. The trick is to do something that gets us closer to the solution we are looking for.

One other thing.  At one point in the procedure I am going to have to take a log of both sides.  Even if you don't understand logarithms, this should pose no emotional problem since I am doing the same to both sides.  Then, however, you are going to have to take my word for a 'log identity'.  If you are into logarithms, you will understand why the identity holds but if not, don't sweat it.  It is true.  This identity is:

logabc = clogab.  Incidentally, the inverse of the left side of this formula is ac =b.  That may give you a clue why the identity works.

In words:   log to the base 'a' of 'b' raised to the 'c'th power equals c times the log to the base a of b.

So let's start.  I want to end up with a formula for each of the terms, in turn, on the left side of the equation.

The original equation is

At = Ao(1/2)t/h

Let's divide each side by (1/2)t/h.  Note that this cancels out the (1/2)t/h on the right side and leaves it on the left.  It is more conventional to have the subject of the formula on the left so we will exchange them.  After all if 7 = 3+4 then 3+4 = 7.  Our formula then becomes

Ao = At divided by (1/2)t/h. Don't know how to get my computer to write this so I will leave you to write it down on a piece of paper.

So what is this formula good for.  It was noted early on in the use of carbon dating that there were some discrepancies.  With artifacts for which the exact date was known, the Carbon date did not agree.  The hypothesis was that the rate of 14C production in the upper atmosphere might not have been constant over the years.  So cores were drilled into very old trees, the rings were separated and carbon dated.  The above formula was used to work out the concentration  of carbon 14 which had been present for each year  that a ring was laid down.  And indeed it was found that the true curve diverged by a small but significant amount over time from the theoretical curve.  When the true curve was used, the dates all fell into place.

Now let's work on t and h.  The first thing I will do is to divide both sides by Ao.  This cancels Ao on the right side and leaves us with

At/Ao = (1/2)t/h

Now I'll take the log of both sides

log (At/Ao) = log[(1/2)t/h]

Remember our identity.  I can take t/h to the front of the right side so

log(At/Ao) = t/h(log1/2)

Now it is simple.  I simply divide both sides by log1/2 and we have t/h by themselves on the right side.  You take it from here.  Isolate t and h.  If you do it right you will find that

t = [log(At/Ao]/[hlog(1/2)]


h = [tlog1/2}/[log(At/Ao}

How about the formula for t.  This is pretty obvious.  Now that we have the needed correction of the production of 14C over the past , we can date any object that was once alive up to about 50,000 years.  This is carbon dating.

How about h.  We can't actually wait around for 5730 years to see when we have half of a quantity of radioactive carbon left.  We can, thought, observe the rate of disintegration on a shorter time span.  Using the h formula we can work out the half life of each radioactive isotope and some of them are multi millions of years.

Tuesday, October 3, 2017

The Anthropocene

This is a book review of William F Ruddiman's book, Plows, Plagues and Petroleum.  It's premise is that the Anthropocene* didn't start some 200 years ago with the beginning of the industrial revolution and hence the burning of fossil fuels but actually started 6000 to 8000 years ago.

* The age in which humans have started to have a significant effect on the climate

In the popular literature you will often find comments such as 'we live in a very unusual period.  Our climate, compared with previous times, has been remarkably stable for thousands of years'    That is not to say completely stable.  We have had the so called little ice age for instance and the medieval warm period but compared to the climate as read in ice cores, this has been a period of great stability.

Prof. Ruddiman basis much of this contention on information from ice cores.  In Antarctica, cores have been drilled which reach ice which was deposited around 800,000 years ago.  Over this period the alteration between glacial periods and interglacial periods* has had a cycle of about 100,000 years.  Here is a most amazing graphic of the past cycles.

* Note that I say glacial and interglacial period, not ice age.  Strictly speaking, despite popular usage, an ice age is the approximately 3m year period we are in with approximately 50 or so glacials and interglacials.  If we want to use the term ice age, for instance, for the time between the previous interglacial (the Eemian) and the present interglacial (the Holocene) then we need another name for the approx. 3m year period of alternating cold and warm periods that we are in the middle of right now.

What has caused these warm and cold periods has been pretty well established as the Milankovitch cycles.  There are three of these which have different periodicities.  There is the tilt of the earth  which varies between 21.2 and 24.5 degrees from the plane of it's orbit.  it is called Obliquity for some reason.  It's period is about  41,000  years.  There is the eccentricity of the orbit which varies from round to elliptical and back with a period of 100,000 years* and there is the orientation of this ellipticity in space which will result in the earth being closest to the sun in summer or closest in winter.  This has a period of 23,000 years and is called axial precession

It is a little more complicated than this.  For instance Eccentricity has a number of components.  It is not a simple sin wave but that will do for now.

Adding these three cycles together you get a variability in the strength of the sun on the surface of the earth and most important, in the mid to high latitude area of the Northern Hemisphere (where most of the land is).  To go into a glacial (glacial period), the insolation (Amount of radiation reaching the earth's surface) must be low in the Northern Hemisphere summer.  This allows snow to remain over the summer and to be increased during the next winter. Then the more land that is covered continually with snow, the more solar radiation is reflected back into space and we have a feedback which accelerates the process.  I won't go into how glacials end but you can go here and here for some ideas on how this occurs.

Over many many glacial-interglacial periods it has been observed that Carbon dioxide rises as the ice melts (some controversy on why) and a little before maximum melt, Carbon dioxide begins to fall.  Following this, with the odd up-tick CO2 falls continually.  At a certain level of Carbon dioxide, combined with the right part of the Milankovitch cycle, snow begins to accumulate, bringing on the start of the next glacial.

Since the Milankovitch cycle is the sum of three cycles, each with a different period, each glacial-interglacial cycle is somewhat different.  Looking at these cycles, the two which are most like the present one that we are in are the 4th and the 9th back from our present one.

In both these cycles (and in other less similar cycles) Carbon dioxide began to fall and just continued to do so, starting a little before maximum melt and falling to about 185ppm.

Our recent (Holocene) interglacial started some 20,000 years ago by definition since that was when the ice sheet was at it's greatest extent but melting really got under way about 11,500 years ago.  And as with all other cycles, Carbon dioxide began to rise.

Then, as usual, just before maximum melt, Carbon dioxide began to fall.

If it had continued, then at a certain point, snow would have begun to accumulate again.  Apparently the 'epicenter' of ice accumulation is on the high lands of Baffin Island and somewhat later in Labrador.  It didn't happen.  Around 6000 to 8000 years ago, the concentration of Carbon dioxide began to climb in complete contrast to other cycles.  It wasn't enough to fully counteract the downswing in the  Milankovitch cycle  but greatly slowed down the cooling.

It had almost reached the level for snow accumulation when there were two catastrophic events in human History.  One was the Black Death which scythed down huge numbers of people* in Asia, the Middle East and Europe.

It is often noted that this was the beginning of the rise of the rights of the serfs since they were in such short supply that they could demand better conditions in exchange for their labor.

The second was the invasion of South America by the Spanish.  The Spanish brought with them a plethora of deadly diseases for which the local population had no resistance.  Disease spread through south, central and North America and decreased the population*, by some estimates, by 90%.  In both plagues forests grew up on deserted farm lands and drew down Carbon dioxide below the level needed for the beginning of snow accumulation.

*Contrary to popular opinion, archeology has now confirmed that North America was populated by a large number of people, many of them living in what we would characterize as  advanced civilizations.

There is some very interesting evidence that glaciation  started.  Around the high lands of Baffin island there is a 'halo' of dead lichen with young new lichen beginning to grow here and there.  What happened?

Apparently, snow began to accumulate and last through the summer and occupy more and more area and of course smothered the lichen.  Then  along came the industrial revolution and the snow retreated again leaving this halo of dead lichen.  We were that close to beginning, once more, to slide into a glacial.

So what did man do to slow the advent of a new glacial for long enough for the Industrial Revolution to take over and really up the concentration of this green house gas.

First there was the burning down of forests to simply roast and catch animals. Areas burnt off, and especially if burnt off regularly, became grass lands which attract grazing animals and in which it is much easier to hunt.   In Australia, this probably started around 50,000 years ago when man first reached that continent.  Then as agriculture started, forests were cleared to plant crops.  An early technique was to simply ring bark a tree and then plant a fire at the base once it had died and dried out.  As the bronze age and then the iron age took hold, we could simply fell the trees.

Very soon after that, the plow was invented.  We have seen the tremendous damage the plow can do in modern times with the destruction of the soils of the great plains in America.  These were reservoirs of huge amounts of carbon which the plow released into the atmosphere.  If you travel through the Middle East you see clearly all the exposed rock.  The soils there have not only released their carbon but have been washed into the sea.  Farming with the plow is mainly responsible.

In the Far East the cultivation of rice in ponds was developed.  Anaerobic ponds give out large amounts of Methane which is a very powerful green house gas.  It oxidizes to the less potent Carbon dioxide and so stays around in a less toxic form.  This development reversed the methane trend.  Of course to build the extensive rice ponds, often terraced up the sides of mountains, you first have to eliminate the forests.

Sunday, October 1, 2017

Composting barns

I've just read an article on composting barns.  We are re-inventing the wheel but that is OK.  I saw this system in 1989 in South Africa and they had been using it for some time.  So what are they.  First a little background science.

You can classify the break down of organic material into simpler substances which are available for the growth of plants, into two main types.  This break down can occur aerobically or anaerobically.  The results are different.  With anaerobic break down, the processes are less energetic and two significant by-products are ammonia, NH4, and Hydrogen sulphide, H2S, (which in the air oxidizes to Sulphur dioxide and water.  SO2  H20). Both Ammonia and Hydrogen sulfide are gases and go off into the air.  In doing so, they  take with them the valuable nutrients Nitrogen (N2) and Sulfur (S). 

Aerobic processes are far more vigorous since the strong oxidizer Oxygen (O2) is present and only produce Carbon dioxide (CO2) and water.  In aerobic break down a whole ecology of microfauna build the available nutrients into their body mass. Aerobic processes can use cellulose and lignin as a source of Carbon and energy*.  In anaerobic processes, both are refractory. As long as the source of organic carbon lasts, the waste products are built back into body mass by the primary producers*.  Finally in this system, as organic carbon runs out, nutrients are released in a form that plants can use.  The ecology runs down and the final product left is Humus which has some interesting benefits for the soil.

*  In a photosynthesis system, the primary producers are plants.  In the sea, they are primarly single cell algae and sea weed.  In a compost pile they are micro-organisms and if the source of carbon and energy is wood (cellulose) then the micro-organisms which produce cellulase, the enzyme that can cut off the sugar mollecules from the cellulose are the primary producers.

In a composting barn, you provide a source of carbon in the form of saw dust or wood shavings. You could also use pelleted paper or any other source of cellulose.  Cellulose is an interesting substance.  It is a poly-sacaride.  In other words a chain of sugar molecules joined together in an insoluble form.  No multi-celled animal can digest this material.  Some bacteria, on the contrary, produce cellulase*.  While algae are the primary producers in the sea, cellulase producing micro-organisms are the base of the food chain  in a cellulose rich compost.

Enzymes are named for the substance that they can catalize the use of.  Hence the enzyme that helps metabolize sucrose would be called sucrase while the enzyme that metabolizes cellulose is cellulase.

Of course the cellulose is not enough for these micro-organisms.  They need the other nutrients such as nitrogen, phosphorous, sulfur and so forth to build their bodies.  They scavenge these from the environment and they themselves become food for a whole range of grazers who build these substances into their bodies.

As a rough rule of thumb, each level in the trophic chain can incorporate about a tenth of the material from the level below it.  A ton of phytoplankton can make a tenth of a ton of Krill which can make a hundredth of a ton of whale.  The remaining 90% at each transfer goes back into the soup to be used again by the primary producers.

As long as there is a source of energy, such as sunshine in the case of phytoplankton or cellulose in the case of a compost pile, all these nutrients are re-incorporated into biomass.  When the energy source runs out, there is a net release of nutrients as the various micro-organisms feed on each other but with no energy and Carbon source to power  the uptake of the released nutrients*

* This is why it is so bad to mix saw dust into your soil.  All the free nutrients will be scavenged until the saw dust is used up.  Then nutrients will be released and the plants can start to grow again.

So how about composting barns.  In these barns there are a number of requirements.  First, you need a thick layer of cellulose as bedding.  The urine and dung of the animals living in the barn (or visiting it) is absorbed by the saw dust or wood shavings.  The farm we visited in South Africa used the coarse saw dust from a saw mill.  But that is not sufficient.  The bedding must be kept aerobic.  In Africa, where I first saw this method, they were growing chickens.  This is possibly easier than growing cows because the urine of birds is almost solid.  Cows, by contrast, produce copious amounts of urine.  Labor in South Africa at the time was not expensive and the saw dust bedding of the chickens was stirred each day by hand.

In the case of a cow shed, one would have to have a mechanical method of stirring the bedding.  Cows go for milking and in some systems, go to graze during the day. giving a perfect time to aerate the bedding.

Note that the metabolism of all these wee beasties in the compost give off heat just as you and I do when we metabolize.  The bedding is warm and it has been reported that given a choice, cows will bed down in these barns in preference to staying outside or going into stalls with straw on the floor.

As you can imagine, ventilation is of the greatest importance as well.  No poisonous gases such as Ammonia or Hydrogen sulphide are given off but Carbon dioxide is produced.  A sloping roof with vents at the top of the slope and good access for air from the sides is vital.  The heat from the bedding and the not inconsiderable heat from the cows will create a natural convective circulation.  It is also useful to place the watering troughs outside the shed wall so that the cows can access it but so it does not drip down into the bedding. Moisture is needed for the activity of the compost bed but too much makes it very difficult to maintain aerobic conditions.

 Also useful would be to have drop down curtains, especially on the side where the heavy weather comes from so that rain can be excluded from reaching the bedding.

In really cold climate, one could employ a really large heat exchange ventilation systems which uses a counter flow system to pass outgoing air past incoming air to keep the heat while exchanging the air.  Such systems are used on as smaller scale in air-tight houses today.

When we talked to the farmer in South Africa who was using this system for Chickens, he mentioned as an aside how disease free his chickens were under this system.  Apparently any pathogens that fall into the bedding are on a hiding to nothing.  The environment is inimical to their survival and they are destroyed by the rich fauna of composters.  Another article I read on cow sheds using this system emphasized the same phenomenon.

To recap, what are the benefits of this system.

* Animal welfare.  The very fact that cows vote with their feet and choose to bed down on the compost in preference to staying out in the cold or going to a straw lined stall shows how beneficial such a system is.  It is highly likely that in such a system, the amount of milk per unit feed would increase as the cows are using less energy to keep warm and are less stressed.

* Nutrient retention.  All the nutrients from the waste products of the cows is held in the compost to be later used to enrich the soil of the farm.  Nitrogen and Sulphur do not go off as gases to be lost to the farm.

* Odor control.  The smell of a well aerated compost is faint and pleasant in great contrast to an anaerobic compost.  The neighbors are not annoyed.

* Disease control.  There are strong indications that diseases are reduced with this system.  It is likely, for instance,  (though not yet reported on) that mastitis would be reduced when the cows bed down on a compost bedding.

Monday, September 4, 2017

Getting into orbit

Disclaimer:  I  ain't no rocked scientist.

But it seems foolish the way were are getting into orbit.  I understand why Elon Musk is going this rout.  He wants technology that is capable of landing on Mars using it's rockets. Returning rockets to earth this way is a good test ground for eventually landing on mars.  But for others, who are sending payloads into orbit, it seems pretty costly and inefficient.

Very likely I am wrong.  My calculus is rudimentary and I base the following on simple (high school) physics a touch of Skunk Works philosophy*

*The Skunk works  buys everything it can off the shelf and only innovate those parts of a system needed for the particular function it wants to achieve.  They are consistently within budget and deadlines.

Why Calculus?  If you want to calculate how far you have gone in a car traveling at a constant velocity you just multiply velocity times time.  For instance, traveling at 50km per hour for two hours, you travel 100km.  Sending a rocket into space gets a tad more complicated.

You have a slightly decreasing gravity as you go into near earth orbit, a rapidly decreasing fuel and oxidizer load as you burn off fuel, a decreasing air resistance as you get higher  but an increasing air resistance as your speed increases.  Calculus allows you to combine  these and other constantly varying factors to ultimately work out, for instance, how much fuel you need to get a given payload into orbit.

While we are talking about complications, there are certain restrictions you have to observe.  You can't accelerate too fast or you may damage your payload (people and instruments).  You also must not achieve too great a speed too soon.  If you do, you will burn up the outer skin of the rocket.  The Black bird, for instance, cruising at an altitude of  85,000ft (16 miles)  at Mach 3 (three times the speed of sound) has it's outer skin heat up to about 300degrees C.  The only reason it survives is that it's skin is made of Titanium rather than an alloy of Aluminum.

This introduces another problem into the mix.  Sometimes it is useful to go to the extreme limit of a problem to get an instinctive feel for it.  For a rocket to get into space it needs it's energy to overcome a number of factors.  It must provide enough thrust to equal the weight of the rocket.  More is needed to accelerate the rocket.  For every kg of rocket weight it lifts by a meter, a kgm of energy is needed (9.8 joules).  More still is needed to overcome air friction.

Lets go to the extreme case and take a rocket that provides just enough thrust to hold it in position.    It is not gaining altitude.  It is expending energy to no useful purpose and the amount of energy equals the rate of energy being expended multiplied by the time it remains stationary.  From this you can see that the faster it accelerates, the less total energy it will need just to support it's weight.  The less energy that is wasted just supporting it's weight, the more energy goes into acceleration.  However the above restraints limit how fast it can accelerate.  All this means it needs more fuel.  Remember this analogy.  It will become important a little further along.

Most rocket ships use an oxidizer, often oxygen itself and a fuel which is often Hydrogen.  Already we are courting disaster.  You either have to hold these gases at very high pressure to have enough on board to do the job or at very cold temperatures so that they liquefy.  In both cases you need very special tanks that weigh a lot compared to the sort of tank that you have in your car for gasoline or diesel fuel.  The high pressures or extremely cold temperatures also cause problems.  If we could get rid of this sort of fuel and oxidizer we would be far better off.

So what is the solution.  Take the first stage of your rocket and strap on four, off the shelf, 747 turbo-fan engines.  The PW4000 develops just under 45metric tons of force.  So four of these = just under 180 tons.  Lets call it 150 tons to be conservative. Perhaps better still, use blackbird engines which can work at very high altitudes. You are now using the air as an oxidizer just as all jet planes do and your fuel is the relatively benign jet fuel (very similar to kerosene or diesel fuel).  look at the range of these aircraft.  Just on the fuel in their wing tanks, a 747 can fly a third of the way around the globe at around 30,000ft.  Pretty impressive, no?

On second thought, there might be a third type of engine that I am not familiar with that would be better than either of these two.  The regular 747 engine is designed to work best at around 30,000ft and the Black bird engine to work at super sonic speeds.  What we need is an engine that will work at subsonic speeds at very high altitudes.

Whatever engine you decide on, suppose that you don't have enough thrust now to send your rocket straight up.  Lets strap on a pair of wings and take off from a runway.  The shallower the angle of take off, the greater the load for a given amount of thrust.

Why the wings.  Not only do they allow you to lift payloads far greater than the thrust of the engines but also with far less fuel.  Once again an example is useful to get a feel for the problem.  Picture a 747 at cruising altitude neither gaining or loosing altitude.  The thrust it needs and hence the rate of fuel use is far less that if it turned its nose upward and just hung there on its engines.  With or without wings, you still have to lift x kgs up to y meters but the wings, to a large extent support the weight of the payload without needing this huge extra thrust just to support the weight.

So where have we got to so far.

Basically we have a stripped down 747, possibly with a modified wing for lift at high altitude and suitable high altitude engines.  So how much weight have we eliminated.  A 747 can carry 660 passengers in a one class configuration and very conservatively, each passenger weights 100kg.  That is 75kg per person plus 25kg of baggage.  As I said, this is very conservative.  The load carried is therefore 66000kg or 66 tons and we haven't even considered the freight they carry independent of their passengers and all the fittings inside the fuselage needed to accommodate their passengers.  I don't know how much this would amount to all told but it is considerable.  Probably around 100 tons for passengers, freight and all the fittings the passengers require.

So how do we carry the second stage (the first rocket stage) up to high altitude to be launched.  We have three choices.  We can sling the rocket under the plane, carry it on top the way they did with the shuttle when transporting it back to be refitted after it landed or we can carry it inside the fuselage.  The two outside options probably require some reinforcing for the contact points.  The inside option necessitates a bomb bay or an opening ceiling such as the Shuttle had.  As odd as it seems, carrying the rocket on top might be the easiest option.

So how do we launch.  The mother ship flies toward the equator where the maximum earth rotation boost will be obtained (about 1000mph) gaining altitude as it goes.  When at maximum altitude it turns to face East so that it is traveling in the direction of the earth's rotation.  It puts on full power and does a vomit comet maneuver.  That is to say it pulls up into a parabolic curve at zero gravity or even a slight negative gravity.  At or before the peak, the second stage (first rocket stage) detaches and fires it's rockets.  The mother ship veers out of the way of it's rocket blast.

At this altitude we have lifted the weight of the second stage up, say 100,000ft, gone through by far the greatest part of the atmosphere and given the second stage a speed of, say 1500 mile per hour.  We might be able to get away with some of those off the shelf solid state rockets and further eliminate the problematic hydrogen and oxygen.  Initially, a couple of small canard nose wings might be sufficient to maintain direction.  In the vacuum of space those little nose rockets would maintain direction.  We need to achieve about 18,000 mph.  The solid state rocket shells might then be cut loose or alternatively, they could be configured on the ground to be a useful component for the construction of a space station.

The converted 747 flies (mostly glides) back to base.  It can have another rocket attached be refueled and be back at the launch point  in a few hours.  We could probably launch 4 or 5 rockets each day this way from a single mother ship.

Electric VW combi, bulli, mini-van

VW is finally going to give us the electric Combi.  Fantastic, but they must keep the faith.

The original Combi was iconic for a number of reasons.

* It was simple compared to other vans.
* It was easy to work on - easily repaired
* It was affordable
* It didn't change its styling from year to year.

It should be not only possible but really easy to produce an electric Combi that excels in all of these.  Styling is simple.  Once it is designed simply don't change it.  This is a vital factor in making a car become iconic.  It also allows better pricing.  It is expensive to re-tool your body presses each year.

Electrics by their nature are far simpler that petrol cars.  Make very very sure that everything that might have to be done on the car is very simple to do.  The engine should be removable by undoing 6 nuts and sliding in a new or reconditioned one.  Batteries should be exceedingly simple to replace (for instance when new technology results in an even better battery).  CV joints should be doable by a modestly competent home mechanic and so forth. Go over the rest of the car (exclusive of the propulsion system) and make sure every part is easy to work on.

And don't put in everything that bumps and squeaks.  We are not looking for luxury in the combi.  Just a good ride in an affordable vehicle which has great range and is inexpensive to maintain.  At the very least, make all the flash options just that.........options.

If your engineers simply can't resist a challenge than get them to work on  a way to clad the whole roof with solar cells such that they all give their full power despite not being co-linear or being partially shaded.

No one expects to be able to drive only on solar.  That is unrealistic but what a nice bonus and a way to get you out of trouble if you have ignored the charge of your battery.  It happens.

Keep the faith and you will sweep the market.   Such a car is not for everyone but many of us want to have a smaller footprint.  Many of us want a car that we are proud to drive.

And for #@%^&; sake, don't make it self driving.  We like to drive.  Besides we don't want to be spied on all the time or worse still have our vehicle hacked and therefore come under the control of  someone else.  Even worse, we don't want the various secret service organizations to be able to decide to drive our car over a cliff or into a tree.  In short, we don't want our car even to be connected to the WWW.